博客
关于我
4119:复杂的整数划分问题
阅读量:266 次
发布时间:2019-03-01

本文共 964 字,大约阅读时间需要 3 分钟。

在编程中,动态规划是一种强大的工具,可以用来解决许多组合数学问题。以下是三个与整数划分相关的函数实现,它们分别用于解决不同的划分问题。

第一个函数slvK(int n, int k)用于计算将整数n划分为k个整数之和的不同方式数。这个函数使用动态规划的思想,通过建立一个二维数组dp,其中dp[i][j]表示将整数i划分为j个整数之和的方式数。初始条件dp[0][0]=1表示只有一个方式可以将0划分为0个整数。然后,通过双重循环遍历每个可能的i和j,递归地将问题分解为两个子问题:一个是不包含1的划分数,另一个是包含1的划分数。最终,函数返回dp[n][k],即n划分为k个整数之和的方式数。

第二个函数slvD(int n)用于计算将整数n划分为不超过k个数的不同方式数,其中k等于n。这个函数同样使用动态规划的思想,dp[i][j]表示将整数i划分为不超过j的数的不同方式数。初始条件dp[0]被初始化为一个长度为n+1的向量,所有元素都为1,因为只能有一种方式将0划分为0个数。然后,通过双重循环遍历每个i和j,递归地将问题分解为包含j和不包含j两种情况。最终,函数返回dp[n][n],即n划分为不超过n个数的方式数。

第三个函数slvO(int n)用于计算将整数n划分为最大数不超过k的不同方式数,其中k等于n。这个函数同样使用动态规划的思想,dp[i][j]表示将整数i划分为最大数不超过j的不同方式数。初始条件dp[i][1]=1,因为只有当j=1时,有一种方式可以将i划分为i个1。然后,通过双重循环遍历每个i和j,递归地将问题分解为包含j和不包含j两种情况。对于奇数j,递归地将问题分解为包含j和不包含j的情况;对于偶数j,直接使用前一个j-1的结果。最终,函数返回dp[n][n],即n划分为最大数不超过n的不同方式数。

在main函数中,读取输入n和k,然后依次调用slvK、slvD和slvO函数并输出结果。这三个函数分别解决了不同的整数划分问题,展示了动态规划在组合数学中的广泛应用。

这些实现不仅展示了动态规划的思想,还通过实际代码实现了组合数学问题的解决。无论是划分为固定个数,还是最大数有限制,动态规划都能有效地解决问题,提供高效的计算方法。

转载地址:http://pybx.baihongyu.com/

你可能感兴趣的文章
Netty源码—4.客户端接入流程二
查看>>
Netty源码—5.Pipeline和Handler一
查看>>
Netty源码—6.ByteBuf原理二
查看>>
Netty源码—7.ByteBuf原理三
查看>>
Netty源码—7.ByteBuf原理四
查看>>
Netty源码—8.编解码原理二
查看>>
Netty源码解读
查看>>
Netty的Socket编程详解-搭建服务端与客户端并进行数据传输
查看>>
Netty相关
查看>>
Network Dissection:Quantifying Interpretability of Deep Visual Representations(深层视觉表征的量化解释)
查看>>
Network Sniffer and Connection Analyzer
查看>>
NFS共享文件系统搭建
查看>>
ng 指令的自定义、使用
查看>>
nginx + etcd 动态负载均衡实践(二)—— 组件安装
查看>>
Nginx + uWSGI + Flask + Vhost
查看>>
Nginx Location配置总结
查看>>
Nginx 动静分离与负载均衡的实现
查看>>
Nginx 反向代理解决跨域问题
查看>>
Nginx 反向代理配置去除前缀
查看>>
nginx 后端获取真实ip
查看>>